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1 Description of model

We start with a heuristic discussion of a model, describing spatial evolution of mutating geno-
types under selection rates. Each genotype might be characterized by a pair x̂ := (x, sx). Here
x ∈ Rd is a location in the Eucledian space occupied by this genotype, and a mark sx is its
quantitative characteristic. We will consider, cf. [4, 7], a continuous-gene space model. Namely,
sx ∈ R+ := [0,+∞) will be understood as a length of a genotype located at x.

We describe an infinite collection of genotypes as a configuration γ̂ := {x̂}. Having in mind
that in the reality any individual with a given genotype has not only position in space but also
non-zero size, we assume that γ := {x} is a locally finite subset in Rd. Namely, γ ∩Λ is a finite
set for any compact Λ ⊂ Rd. Let Γ and Γ̂ be the spaces of such γ’s and γ̂’s, accordingly.

In the present paper, we deal with mutating genotypes. Omitting the nature of these
mutations, we suppose that they lead to a stochastic evolution of marks sx, given by Brownian
motion on R+ with absorption at 0. We consider a birth-and-death stochastic dynamics of
mutating genotypes. It means that at any random moment of time the existing genotype
may disappear (die) from the configuration or may produce a new one. This new genotype
will be placed at other location in the space. It has the parent’s genotype at the moment of
birth, but then it immediately involves in a mutation process. This may be understood as
an expansion of genotypes along the space. The probabilistic rates of birth and death of a
genotype are independent of the rest of configuration, however, we suppose that they depend
on sizes of genotypes. In fact, it means that we have selection in rates of birth and death. It
is natural for biological systems that genotypes with very shot as well as very long length have
less possibilities for surviving and reproduction, see e.g. [3, 1].

The heuristic Markov generator of the dynamics described above may given by

(LF )(γ̂) =
∑
x∈γ

∫
Rd

a(x− y)b(sx)
(
F (γ̂ ∪ {y, sx})− F (γ̂)

)
dy

+
∑
x∈γ

d(sx)
(
F (γ̂ \ {x, sx})− F (γ̂)

)
+
∑
x∈γ

∂2

∂s2x
F (γ̂). (1.1)
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The first term in (1.1) describes the birth part of the dynamics. This reproduction step
involves selection as well as expansion of genotypes along the space. The function a describes
an expansion (migration) rate, it is independent on marks sx, sy. Function b is associated with
stabilizing selection. It prescribes that some lengths may be ranked against the other lengths.
Genotypes with optimal (or at least more optimal) length are assumed to breed and to spread
more intensively. We assume that 0 ≤ a ∈ L1(Rd), a is an even function, b : R+ → R+ with
b(0) = 0. Without loss of generality we suppose that

∫
Rd a(x)dx = 1.

The second term is the death part of the dynamics. We assume here that the death rate
d : R+ → R+ depends only on a length of a genotype, and does not depend on a location of
genotype in the space. The shape of d will be discussed below.

The third term describes mainly mutations of genotypes, but also can include all random
changes within the genotype, such as: duplication, genetic drift, etc. This differential operator
is a modification of the generator for a random jump mutation model on the continuous space.
Let us note that the third term is the direct sum of operators. That means that we assume
that each offspring develops independently on others and we do not consider any interaction
between existing genotypes.

Note that models of this type (without expansion), so-called mutation-selection models,
play an important role in analysis of many problems of population genetics, see e.g. [3, 1].

To give a rigorous meaning to the expression (1.1) we consider the following classes of
functions. Let D consist of all functions φ : Rd × R+ → R which have bounded support
in Rd × (0,∞), and φ is a continuous functions in the first variable and twice continuously
differentiable in the second variable. For any φ ∈ D the following expression is well-defined:

⟨φ, γ̂⟩ :=
∑
x∈γ

φ(x, sx),

since the summation will be over finite set γ∩Λ only for some compact Λ ⊂ Rd. Let φ1, . . . , φN ∈
D and f : RN → R be twice continuously differentiable function on RN bounded together with
all its partial derivatives. We consider a function F (γ̂) = f(⟨φ1, γ̂⟩, . . . , ⟨φN , γ̂⟩). A class of all
such functions F we denote by F . Then for any x̂ ∈ γ̂ such that x is outside of the union of
supports of φ1, . . . , φN , we have that the value of F (γ̂) for F ∈ F does not depend on x̂. In
particular, the summation in the second term in (1.1) will be taken over a finite over subset
of each γ only, hence this term is well-defined. Analogously, for each x which is outside of the

union of supports above,
∂2

∂s2x
F (γ̂) = 0. Similarly, the integral in the first term in (1.1) will

be taken over a compact set, moreover, if, additionally, a has compact support in Rd the sum
before integral will be also finite. For a general integrable function a, this sum is a series which
may converges only a.s. in the following sense.

Let µ by a probability measure (state) on the space Γ̂ with σ-algebra described e.g. in [6].
A function kµ : Rd ×R+ → R is called a density (or a first correlation function) of the measure
µ if for any φ : Rd × R+ → R such that kµφ ∈ L1(Rd × R+) we have that ⟨φ, ·⟩ defined before

belongs to L1(Γ̂, µ) and ∫
Γ̂

⟨φ, γ̂⟩dµ(γ̂) =
∫
Rd

∫
R+

φ(x, s)kµ(x, s)dxds.

In this case, ⟨φ, γ̂⟩ is well-defined for µ-a.a. γ̂ ∈ Γ̂. It is evident now, that, for a ∈ L1(Rd), the
first term in (1.1) with F ∈ F is well-defined for µ-a.a. γ̂ ∈ Γ̂ for any probability measure µ
such that its density kµ is bounded.

The problem of construction of evolutions of states with generator (1.1) is usually related
with construction and properties of evolution of densities and higher-order correlation functions
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(see e.g. [8] for the case without marks). The aim of the present paper is to study the evolution
of the density only. Therefore, we suppose that there is an evolution of measures given by

d

dt

∫
Γ̂

Fdµt =

∫
Γ̂

LFdµt, F ∈ F (1.2)

with initial condition µ0 at t = 0. We assume also that kt be a density of µt. Then, choosing
Fφ(γ̂) := ⟨φ, γ̂⟩ for φ ∈ D we obtain

(LFφ)(γ̂) =
∑
x∈γ

∫
Rd

a(x− y)b(sx)φ(y, sx)dy −
∑
x∈γ

d(sx)φ(x, sx) +
∑
x∈γ

∂2

∂s2x
φ(x, sx).

Therefore,∫
Γ̂

(LFφ)(γ̂)dµt(γ̂) =

∫
Rd

∫
R+

kt(x, s)

∫
Rd

a(x− y)b(s)φ(y, s)dydsdx

−
∫
Rd

∫
R+

kt(x, s)d(s)φ(x, s)dsdx+

∫
Rd

∫
R+

kt(x, s)
∂2

∂s2
φ(x, s)dsdx.

(1.3)

On the other hand,

d

dt

∫
Γ̂

Fφ(γ̂)dµt(γ̂) =
d

dt

∫
Rd

∫
R+

kt(x, s)φ(x, s)dsdx. (1.4)

Since φ ∈ D is arbitrary, we derive by the changing of variables and by the integration by
parts in (1.3), that, by (1.2), (1.3), (1.4), the densities kt should satisfy (in a weak sense) the
following differential equation

∂

∂t
kt(x, s) = b(s)

∫
Rd

a(x− y)kt(y, s)dy − d(s)kt(x, s) +
∂2

∂s2
kt(x, s). (1.5)

Using the assumption
∫
Rd a(x)dx = 1 we may rewrite (1.5) as follows

∂

∂t
kt(x, s) = (Akt)(x, s)− (Hkt)(x, s), (1.6)

(Akt)(x, s) := b(s)

∫
Rd

a(x− y)
(
kt(y, s)− kt(x, s)

)
dy, (1.7)

(Hkt)(x, s) := − ∂2

∂s2
kt(x, s) + (d(s)− b(s))kt(x, s). (1.8)

It is worth noting that appearance of effective potential v(s) = d(s) − b(s) is inspired by the
evolution mechanism of the spatial microscopic model. The function v(s) has meaning of a
fitness function, see e.g. [3].

In the next section we will study the classical solution of (1.6)–(1.8) with an initial condition
k0 in a proper Banach space.

2 Properties of a density

LetH = L2(R+) be real Hilbert space, and consider the following Banach space X : a measurable
function k : Rd × R+ → R belongs to X if, for a.a. x ∈ Rd, k(x, ·) ∈ H and ∥k∥X :=
ess supx∈Rd ∥k(x, ·)∥H < ∞. Hence one can naturally embed H into X as set of functions which
are constant in x. We will use the same notations for function f ∈ H as an element of X .
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Suppose that there exists ω ≥ 0 such that

v(s) := d(s)− b(s) ≥ −ω, s ∈ R+. (2.1)

Let C∞
0 (R+) consist of all smooth functions f on R+ with bounded support such that

f(0) = 0. Then the operator (Hf)(s) := −f ′′(s)+v(s)f(s) with a domain C∞
0 (R+) is essentially

self-adjoint in H (see e.g. [2]). Let
(
H̄,Dom(H̄)

)
be its self-adjoint closure in H. Let D ⊂ X

consist of all functions k ∈ X such that, for a.a. x ∈ Rd, k(x, ·) ∈ Dom(H̄).

Lemma 1. Let (2.1) hold and b ∈ L∞(R+). Then (A−H,D) is a generator of a C0-semigroup
S(t) in X .

Proof. Since v is bounded from below, we have, for any f ∈ Dom(H̄), (−H̄f, f)H ≤ ω∥f∥2H.
Therefore, by e.g. [5, Example II.3.27],

(
−H̄,Dom(H̄)

)
is a generator of a C0-semigroup TH̄(t)

in H, and moreover, ∥TH̄(t)∥ ≤ etω, t ≥ 0. Then, by a version of Hille–Yosida theorem (see
e.g. [5, Corollary II.3.6]), for each λ > ω, λ ∈ ρ(−H̄) and ∥R(λ,−H̄)∥ ≤ (λ − ω)−1. Here
and below ρ(B) and R(λ,B) denotes a resolvent set and a resolvent of a closed operator B,
correspondingly. By (1.8) and the properties of H̄, it is evident that (−H,D) is a closed densely
defined operator in X , moreover, ρ(−H) = ρ(−H̄), and, for each λ ∈ ρ(−H),(

R(λ,−H̄)k(x, ·)
)
(s) =

(
R(λ,−H)k

)
(x, s), k ∈ X , x ∈ Rd, s ∈ R+.

As a result,

∥R(λ,H)k∥X = ess supx∈Rd

∥∥(R(λ,−H)k
)
(x, ·)

∥∥
H = ess supx∈Rd

∥∥R(λ,−H̄)k(x, ·)
∥∥
H

≤ (λ− ω)−1 ess supx∈Rd ∥k(x, ·)∥H = (λ− ω)−1∥k∥X .

Hence, by the version of Hille–Yosida theorem mentioned above, (−H,D) is a generator of a
C0-semigroup TH(t) in the space X , and moreover, ∥TH(t)∥ ≤ etω, t ≥ 0.

Next, since b ∈ L∞(R+), we have, for any k ∈ X and for a.a. x ∈ Rd,

∥(Ak)(x, ·)∥H ≤ ∥b∥L∞(R+)

(∫
R+

(∫
Rd

a(x− y)
(
k(y, s)− k(x, s)

)
dy

)2

ds

) 1
2

≤ ∥b∥L∞(R+)

(∫
R+

∫
Rd

a(x− y)
∣∣k(y, s)− k(x, s)

∣∣2dyds) 1
2

≤
√
2 ∥b∥L∞(R+)

(∫
R+

∫
Rd

a(x− y)|k(y, s)|2dyds+
∫
R+

|k(x, s)|2ds
) 1

2

≤ 2∥b∥L∞(R+)

(
ess supx∈Rd ∥k(x, ·)∥2H

) 1
2 ≤ 2∥b∥L∞(R+)∥k∥X .

Therefore, A is a bounded operator in X with ∥A∥ ≤ 2∥b∥L∞(R+). Then, by e.g. [5, Theorem
III.1.3], the operator−H+A with domainD generates a C0-semigroup S(t) in X , and moreover,

∥S(t)∥ ≤ exp{(ω + 2∥b∥L∞(R+))t}, t ≥ 0.

Our goal is to study the asymptotic behavior of kt(x, s) = S(t)k0(x, s) as t → ∞. Here
k0 ∈ X . In the particular case then, in fact, k0 ∈ H, one can solve this problem in details.

Theorem 2. Let (2.1) hold and b ∈ L∞(R+), b(s) ≥ 0. Suppose additionally that the operator
H̄ in H has either simple discrete spectrum λ0 < λ1 < . . . , λn → ∞, as n → ∞, or continuous
spectrum [λ,+∞) and a finite number of simple eigenvalues λ0 < λ1 < . . . < λn < λ. Consider
the initial condition given by k0(x, s) = ϱ0(s), for a.a. x ∈ Rd, s ∈ R+, where ϱ0 ∈ H. Then

∥S(t)k0 − e−tλ0c0f0∥X = o
(
e−tλ0

)
, t → ∞, (2.2)

where f0 is the eigenfunction of the operator H̄ corresponding to the eigenvalue λ0, and c0 =
(ϱ0, f0)H.
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Proof. By the proof of Lemma 1, the operator (−H,D) is a generator of a C0-semigroup TH(t)
in X and A is a bounded operator in X . Then, by the Trotter formula (see e.g. [5, Exersise
III.5.11]), we have

S(t)k0 = lim
n→∞

(
TH

( t

n

)
e

t
n
A
)n

k0,

where the limit is considered in the sense of norm in X . Note that for any f ∈ H ⊂ X ,
Af = 0, therefore, etAf = f for all t > 0. Since k0 does not depend on x, we have that
TH

(
t
n

)
e

t
n
Ak0 = TH

(
t
n

)
k0, and the latter function does not depend on x also. As a result,

S(t)k0 = TH(t)k0 = TH̄(t)ϱ0. Therefore, it is enough to show that

∥TH̄(t)ϱ0 − e−tλ0c0f0∥H = o
(
e−tλ0

)
t → ∞.

The latter asymptotic follows from the general spectral theory of self-adjoint operator, see
e.g. [9]. Using spectral decomposition of self-adjoint operator −H̄ in the Hilbert space H, we
have:

TH̄(t)ϱ0 =

∫
e−tudEH̄(u)ρ0,

where EH̄ is the spectral measure of −H̄ and the integral is taken over the spectrum of −H̄.
Then

∥TH̄(t)ϱ0 − e−tλ0c0f0∥2H ≤ e−2tλ1∥PH′ϱ0∥2H = o(e−2tλ0),

where PH′ is the projection on H′ := H ⊖ {f0}. (Note that λ1 may be equal to λ.) The
statement is proved.

Remark 1. Asymptotic formula (2.2) means, in particular, that starting with any function of
the form k0(x, s) = ϱ(s), x ∈ Rd, ϱ ∈ H, we get eventually for kt(x, s) a shape of the first
eigenfunction f0 of operator H.

Remark 2. The behavior of the populations in whole depends on the sign of λ0: if λ0 > 0,
then populations are vanishing, if λ0 < 0, then populations are increasing. The case λ0 =
0 (”equilibrium” regime) is of particular interest. As follows from the well-known facts on
spectrum of one-dimensional Schrödinger operator, see e.g. [2], the sign of λ0 depends on the
shape of the function v(s) = d(s)− b(s). Let us distinguish two interesting cases.

1. let 0 ≤ v(s) → +∞, s → +∞, that means, in particular, d(s) ≥ b(s) and d(s) → +∞; in
this case the spectrum of H̄ is discrete and simple and, moreover, λ0 > 0;

2. let v(s) = d(s)−b(s) → 0, s → ∞ and b(s) = d(s)+ε(s), s ∈ (a, b) ⊂ R+ with ε(s) > 0;
in this case the operator H̄ may have a discrete spectrum below the continuous one with
λ0 < 0.
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